Shining a Hilbertian lamp on the bidisk

نویسنده

  • John E. McCarthy
چکیده

1 Lecture 1: Model Theory seca The basic idea behind model theory is to associate a Hilbert space construction with a function, and then use Hilbert space theory to illuminate the function theory. In one variable, one approach is to study the de Branges-Rovnyak space associated with a function φ in the ball of H(D). This is the Hilbert space of analytic functions on the disk D with reproducing kernel 1− φ(λ)φ(ζ) 1− λ̄ζ . (1.1) eq11

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convergence of sample and population Hilbertian functional principal components

In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...

متن کامل

What Hilbert spaces can tell us about bounded functions in the bidisk

We discuss various theorems about bounded analytic functions on the bidisk that were proved using operator theory.

متن کامل

Distinguished Varieties

A distinguished variety is a variety that exits the bidisk through the distinguished boundary. We show that Andô’s inequality for commuting matrix contractions can be sharpened to looking at the maximum modulus on a distinguished variety, not the whole bidisk. We show that uniqueness sets for extremal Pick problems on the bidisk always contain a distinguished variety.

متن کامل

A Carathéodory theorem for the bidisk via Hilbert space methods

If φ is an analytic function bounded by 1 on the bidisk D2 and τ ∈ ∂(D2) is a point at which φ has an angular gradient ∇φ(τ) then ∇φ(λ) → ∇φ(τ) as λ → τ nontangentially in D2. This is an analog for the bidisk of a classical theorem of Carathéodory for the disk. For φ as above, if τ ∈ ∂(D2) is such that the lim inf of (1− |φ(λ)|)/(1− ‖λ‖) as λ → τ is finite then the directional derivative D−δφ(τ...

متن کامل

The Three Point Pick Problem on the Bidisk

We prove that a non-degenerate extremal 3 point Pick problem on the bidisk always has a unique solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010